

C V I

T F E

P A O TM

The Data Organization

1251 Yosemite Way

Hayward, CA 94545

(510) 303-8868

info@thedataorg.com

Database Interface Architecture

By Rainer Schoenrank

 Data Warehouse Consultant

October 2012

6/29/2018 Page 2

Copyright © 2012 Rainer Schoenrank

Copyright © 2009-2012 Rainer Schoenrank. All rights reserved. No part of this document may be

reproduced in whole or in part, in any form or by any means, electronic or manual, without express

written consent of the copyright owner.

The logo is a trademark of The Data Organization in the United States and/or in other countries.

Biography

Rainer Schoenrank is the senior data warehouse consultant for The Data Organization. He has

degrees in physics from the University of Victoria and computer science from the University of

Victoria and California State University Hayward. He has built data warehouses for clients such as

Pacific Bell, Genentech, GE Leasing, SGI, PPFA, Brobeck, BofA, Clorox, Leapfrog and Intuitive

Surgical. He can be reached at rschoenrank@computer.org.

mailto:rschoenrank@computer.org

6/29/2018 Page 3

Copyright © 2012 Rainer Schoenrank

Table of Contents

1. INTRODUCTION ... 4

2. REQUIREMENTS .. 4
2.1 Technical Requirements ... 5
2.2 Legal Requirements ... 6

3. OPTIONS .. 7

3.1 Implementation Assumptions ... 8
3.2 Interface Location Options ... 9
3.3 Implementation Comparison ...10
3.4 Security Comparison ...12
3.5 Performance Comparison ..13

4. SPECIFICATIONS ..14

4.1 Dynamic SQL Specification..14
4.2 Stored Procedure Interface Specification ..15
4.3 Application Object Specification ..15

5. RECOMMENDATION ..17

6/29/2018 Page 4

Copyright © 2012 Rainer Schoenrank

1. INTRODUCTION

The purpose of the document is to define the scope and options for the interface between a database

and the many business applications that access the data stored in the database. A well-defined

database interface can isolate changes in the database from propagating into the business

applications and changes in the business processing from propagating into the database.

The document defines the database interface problem, enumerates the solutions and outlines the

impact of each solution on the database performance. The security, logging and design requirement

of the interface are discussed. The implementation details of each solution are described as

functions provided by the database interface to transfer data to and from the application.

2. REQUIREMENTS

The database interface is the contract between the application programs and the database

management system (DBMS) which specifies:

• How the data in the application database will be accessed

• What data needs to be provided to the DBMS

• What data changes need to be done for the data access

• What data is returned to the application program

• What information will be recorded about the DBMS access

The requirements of the database interface come from two sources, technical requirements and

legal requirements.

6/29/2018 Page 5

Copyright © 2012 Rainer Schoenrank

2.1 Technical Requirements

The technical requirements recognize that the database will be used by multiple business

applications. This database requirement of reusability means that the requirements focus on DBMS

isolation, database performance and best practices.

2.1.1 DBMS Isolation

DBMS isolation means that the business application should not depend on the SQL language

implemented by the DBMS manufacturer. Meeting this requirement will ensure the application

data can be delivered using any DBMS in any network location, setting the ground work for a

cloud-based implementation.

2.1.2 Performance

To get the best performance for the business applications, the database interface must minimize the

number of calls required to retrieve the data from the database and amount of unnecessary DBMS

processing in each call. Because each call to the DBMS by the business application is a remote

procedure call with a data transfer across the network, to get the best performance the application

process must:

• Maximize how much database processing is done in a single call to the DBMS.

• Minimize the number database calls required by the application process.

2.1.3 Error Logging

As part of the best practice for database, all errors encountered in accessing the tables in the

database will be logged to enable the debugging of the business application and the detection of

database tampering.

6/29/2018 Page 6

Copyright © 2012 Rainer Schoenrank

2.2 Legal Requirements

The legal requirements tend to specify functionality that must and must not be done. The best

known legal requirements are embodied in the Sarbanes-Oxley Act of 2002 (SOX) and the

requirements to protect the data from web hacking.

2.2.1 Access Logging

Most IT departments interested in meeting the SOX compliance requirements will try to err on the

conservative side. Sarbanes Oxley is not the only set of requirements. Depending on where you do

business, there are probably a dozen overlapping financial reporting statutes with similar

requirements.

A conservative approach to meeting most compliance requirements would suggest the ability to

track the accesses to the data over time to:

1. Show who created the data and when the data was created – this is supported by a table

insert trigger in the database.

2. Show who modified the data and when the data was modified – this is supported by a table

update trigger in the database.

3. Show all end user and administrative accesses of the database – this is supported in the

database interface because the knowledge of the user and process is external to the

database.

2.2.2 Data Security

The security of the data in the database should limit access to:

• Only authorized users, e.g., not allow SQL hacking of the database.

• tables in the database

• rows in the tables

• columns in the rows

6/29/2018 Page 7

Copyright © 2012 Rainer Schoenrank

The security of the database interface will need to be reinforced by the security implemented within

the DBMS. The database grants by the DBMS must not bypass the logging requirements of the

database interface. The simpler the database interface and the security granted, the easier it will be

to maintain and enforce.

3. OPTIONS

The requirements give in the previous section show the processing that is required within the

database interface. This processing can be visualized as layers stacked on top of the DBMS. The

processing stack has the following layers:

1. User interface with presentation logic – the presentation of the data to the user so that the

data can be created, modified or deleted in the database. This is usually a Web browser.

2. Application services with business logic – the business processing of the data to validate

the data and apply the business rules to the user’s requests. This is usually an application

program located on a server separate from the Web server.

3. Application object to database table translation – the business object used by the

application may be a complex structure (e.g., invoice) that does not map directly into a

database table. This process does the translation between the two representations.

4. SOX and security compliance, database access and error logging – this layer is included to

meet the logging requirements of the database interface.

5. Database tables in the DBMS – the application data represented as tables of data stored by

the DBMS.

The database interface is located between two layers somewhere in this processing stack and

divides the requirements between the business application and the DBMS.

6/29/2018 Page 8

Copyright © 2012 Rainer Schoenrank

3.1 Implementation Assumptions

The implementation of the database interface makes four assumptions.

1. The database is implemented in a DBMS which supports SQL to implement data access

operations on the database (i.e., the DBMS SQL interface layer exists).

2. Validating the relationships between the tables (referential integrity) in the database is

provided by the DBMS (i.e., the DBMS supports the requirements of the relational model).

3. A business application object is can be translated into an ordered sequence of SQL

operations on a set of database tables (i.e., business object to database table translation is

possible).

4. The application always retrieves the data of a record or business object before modifying

the data and storing the changed business object.

6/29/2018 Page 9

Copyright © 2012 Rainer Schoenrank

3.2 Interface Location Options

How the database interface is implemented depends on the location of the database interface within

the processing stack. There are three locations in the processing stack where the database interface

can be located as shown by the colored lines in Figure 1.

Database Interface Location Options

Logical Processing
Functionality Stack

Location 1
At DBMS

Location 2
At SOX

Compliance

Location 3
At Object

Translation

User Interface with
Presentation Logic

Web Pages Web Pages Web Pages

Application Services with
Business Logic

Application
Server

Application
Server

Application
Server

Application Object to
Database Table Translation

Database and
DBMS

SOX and Security Compliance,
Access Logging, Error Logging Database and

DBMS Database Tables
in DBMS

Database and
DBMS

Figure 1: Logical and Physical Layers of an Application Program

Figure 1shows the three database interface locations. Location 1 is denoted by the red line between

the error logging layer and the DBMS that stores the database tables. Location 2 is denoted by the

green line between the business object to database table translation and the error logging

processing. Location 3 is denoted by the blue line between the application services and the business

object to database table translation layer.

6/29/2018 Page 10

Copyright © 2012 Rainer Schoenrank

3.3 Implementation Comparison

Interface Location
in the

Processing Stack

Database Interface
Implementation

Location of Object to
Relational mapping

1
Using Java, JDBC and

dynamic SQL
In the application

server

2
Using meta data
generated stored

procedures

In the application
server

3
Using application

object stored
procedures

In the database
stored procedure

Table 1: Summary of Database Interface Options

3.3.1 Location 1 Implementation

The implementation of the database interface at location 1 is usually done in an application

program via direct DBMS access using dynamic SQL in an application programming language –

for example: Java and JDBC. The business object to table translation must be done in the

application program and will require a separate DBMS access for each table required by the

business object. Each DBMS access will require access logging and error logging within the

application. The access logging requirement must be met in the application program and requires

an additional DBMS access. The error logging requirement must be met in the application program

and requires an additional DBMS access.

6/29/2018 Page 11

Copyright © 2012 Rainer Schoenrank

3.3.2 Location 2 Implementation

The implementation of the database interface at location 2 can be done in two different ways in the

application program. One way is to use ‘prepared SQL statements’ in a set of is subprograms. This

is identical to location 1 implementation. The other way is via direct DBMS access using database

stored procedure calls which implement the table access, database logging and error logging. The

business object to table translation must be met in the application program and will require a

separate database access for each table required by the business object.

3.3.3 Location 3 -Application Object Stored Procedure Implementation

The implementation of the database interface at location 3 is usually done in an application

program via direct DBMS access using a stored procedure call where the stored procedure

implements the business object persistence methods. The stored procedure will do the business

object to table translation, the table accesses required by the business object and handle the access

and error logging. This implementation minimizes the number of DBMS accesses per business

object.

6/29/2018 Page 12

Copyright © 2012 Rainer Schoenrank

3.4 Security Comparison

The database interfaces at the three locations can be compared using:

• The probability of Sarbanes-Oxley compliance. To comply with Sarbanes-Oxley, the

application specification would be more complex or the compliance can be part of the

DBMS stored procedures.

• The complexity of the database security policy given the database interface choices. A

simpler policy is easier to administer.

• Stored Procedures – Enhances security – no SQL hacking possible

• Stored Procedures – Enables SOX compliance – encapsulates access logging. Access

logging does not have to be enforced in each application

• Stored Procedures – Enables SOX compliance – encapsulates data authorization –

authorization validation does not have to be enforced in each application

• Data security does not have to be enforced in each application.

Interface Location
in the

Processing Stack
Sarbanes

Oxley
Compliant

Error
Logging
Location

DBMS
Security
Policy

Open to
SQL

hacking
attack

Control
Data

Access
by User

Control
Data

Access
by Table

Control
Data

Access
by

Column

Control
Data

Access
by Row

1 No
In the

application
server

all table
operations

Yes No No No No

2 Yes
In the

database
EXECUTE

only
No Yes Yes No Yes

3 Yes
In the

database
EXECUTE

only
No Yes Yes Yes Yes

Table 2: Comparison of Database Interface Security

6/29/2018 Page 13

Copyright © 2012 Rainer Schoenrank

3.5 Performance Comparison

The database interfaces at the three locations can be compared using

• The number database calls required for the application services layer to use the business

objects. Fewer DBMS calls to achieve the object procedure are better.

• The expected performance of the DBMS given the database interface choices. A higher

through put performance would be better.

• The ability to tune the database depends on the number of instances where the database

interface code is located. Fewer database code locations are better.

• The level of coupling between the application process and the DBMS. A lower level of

coupling is better.

Interface Location
in the

Processing Stack
Error Logging

Location
Number of
DBMS calls

Expected
Database

Performance
Database
Tunability

Database
Isolation

Cloud
Database

ready

1
In the

application
server

very large low low None No

2
In the

database
large medium medium Some Yes

3
In the

database
small high high Complete Yes

Table 3: Comparison of Database Interface Performance

6/29/2018 Page 14

Copyright © 2012 Rainer Schoenrank

4. SPECIFICATIONS

4.1 Dynamic SQL Specification

Using dynamic SQL to access the database tables directly with a programming language to access

the DBMS requires the least amount of preparation and delays the analysis of the database interface

until the implementation programming.

Since each DBMS manufacturer uses a different variant of SQL, using dynamic SQL in a

programming language ties the application process to the DBMS manufacturer. The DBMS cannot

be changed without rewriting the entire application process.

Because of the nature of dynamic SQL, the DBMS must do extra work in processing the dynamic

SQL compared with stored procedure calls. Each dynamic SQL statement sent to the DBMS is

parsed, compiled and executed each time it is sent to the DBMS. If the same SQL statement is sent

to the DBMS ten times, it will be parsed and compiled ten separate times. The DBMS has no

memory that the same statement has been used more than once.

The dynamic SQL interface requires full knowledge of the database tables. This knowledge drives

the need to do database denormalization to achieve application performance. Although

denormalization can improve the performance of individual user transactions, it reduces the overall

performance of the database because extra processing is required to keep the denormalized data

without data duplications and integrity errors. Also, the application that uses the dynamic SQL

interface will need to do multiple database calls to do the required logging.

Stored procedures, in contrast, are parsed and compiled when they are defined and they are only

executed each time they are called. This is a much more efficient use of DBMS resources than

dynamic SQL. Also, the stored procedure statements can be optimized by the DBMS automatically.

6/29/2018 Page 15

Copyright © 2012 Rainer Schoenrank

4.2 Stored Procedure Interface Specification

The DBMS interface specification encapsulates each of the four SQL table operations (SELECT,

INSERT, UPDATE, DELETE) in a callable stored procedure that meets all of the interface

requirements within the stored procedure. For this interface implementation, each table in the

database requires the four basic stored procedures plus a stored procedure to search the table, but

the required stored procedures can be generated using the database metadata.

4.3 Application Object Specification

There are two ways of implementing a business object in the database interface:

1. As a multi-table database transaction

2. As a persistent business object.

The difference between these two techniques is the assumptions that are made about the database.

In the first case, the processing assumes that the database contains the true data and the processing

application has a copy of the data to be used for updating the database. The stored procedures that

implement this interface can be quite complex. The procedures do multiple table updates by

following the relationship paths in the database. The details of the procedure depend on the nature

of the processing application.

The stored procedures encapsulate the business object’s representation in the database and the

DBMS access methods. The simplest data access modules handle a business object that

corresponds to a single database table. A single table in the database represents the simplest

possible business object.

When a business object is complex and composed of a database transaction (ordered sequence of

operations on tables), the stored procedures encapsulate the translation of business object to a

database transaction.

6/29/2018 Page 16

Copyright © 2012 Rainer Schoenrank

In the second case, the business object exists in only one place at a time. The object is either being

used in the processing application or it is being stored in the database, not both. The class methods

for a business object require two new methods for the class. The new methods are:

• Persist a business object. This is special destructor method.

• Fetch a business object. This is a special constructor method.

The fetch method reads the business object from the database, constructs the object in the

application and removes the copy of the business object from the database.

The object constructor does not need to be implemented in the DBMS since the existence of the

database implies the definition of the class as a set of related tables and the tables imply the

existence of all of the possible objects instances that are valid.

The persist method is the most complicated since it assumes that the object does not exist in the

database and the object must be created. The persist method stores the object in the database and

destructs the object in the application.

The object destructor method deletes the object instance from the application.

6/29/2018 Page 17

Copyright © 2012 Rainer Schoenrank

5. RECOMMENDATION

The recommended database interface implementation is stored procedure calls on business object

(Location 3) with stored procedure calls on tables (Location 2) being the fallback choice. The

stored procedure interface has the advantages meeting all of the database interface requirements of:

• Performance

o Providing the highest level of DBMS performance and tunability

• Compliance

o Providing full access and error logging

o Guaranteed Sarbanes-Oxley compliance

• Security

o Providing the highest levels of data access (row and column) security

o Eliminating the threat of SQL hacking.

• Database Isolation

o Isolating the application from changes in the structure of the database

o Isolating the application from changes in the database location.

The stored procedures on business objects can convert the relational data model of the DBMS into

an object-oriented data model when the necessary class methods are implemented as stored

procedures in the DBMS by providing:

• ‘optimistic processing’ for data record maintenance. This ensures that the DBMS is not left

with open pointers (cursors) or abandoned record locks.

• stateless processing that doesn’t require any external reset or recovery processing

• a uniform, non-vendor specific stored procedure interface used by all the DBMSs as

<returned value> := <stored procedure name>(input parameter list, output parameter list)

Using these techniques, the database interface implements a data as a service (DaaS) architecture

and the business application becomes independent of the DBMS, the execution environment and

the physical architecture. This allows the database to exist in a heterogeneous, distributed

computing environment, for example, a cloud database environment.

